Big Data Fundamentals and Applications

⁰¹⁰¹Statistical Analysis (III) ¹⁰¹⁰Hypothesis Testing

101010 Asst. Prof. Chan, Chun-Hsiang

Master program in Intelligent Computing and Big Data, Chung Yuan Christian University, Taoyuan, Taiwan Undergraduate program in Intelligent Computing and Big Data, Chung Yuan Christian University, Taoyuan, Taiwan Undergraduate program in Applied Artificial Intelligence, Chung Yuan Christian University, Taoyuan, Taiwan

Outlines

- 1. Introduction
- 2. Road Map of Statistical Analysis
- 3. Hypothesis Testing
- 4. Type I and Type II Errors
- 5. Reliability & Validity Analyses
- 6. Inferential Statistics
- 7. Test of Normality
- 8. Differences between Parametric and Nonparametric Statistics
- 9. Parametric Statistics
- **10.Nonparametric Statistics**
- 11. Correlation Analysis
- **12.**Question Time

Road Map of Statistical Analysis Hypothesis Testing Type I and Type II Errors Reliability & Validity Analyses **Inferential Statistics** Test of Normality **Differences between Parametric and Nonparametric Statistics Parametric Statistics** Nonparametric Statistics **Correlation Analysis**

Introduction

- Before we introduce the inferential statistics, it is important to understand the fundamental concept of statistics, parametric and nonparametric, type I and type II error, reliability and validity, normality and independence, homoscedasticity and heteroscedasticity.
- Here, inferential statistics cover three section: parametric statistics, nonparametric statistics, and correlation analysis.
- The following three slides demonstrate the road map/ cheat sheet/ decision tree of inferential statistics.

Road Map of Statistical Analysis

Hypothesis Testing Type I and Type II Errors Reliability & Validity Analyses Inferential Statistics Test of Normality

Differences between Parametric and Nonparametric Statistics

Parametric Statistics

Nonparametric Statistics

Correlation Analysis

Road Map of Statistical Analysis

Decision Tree

Choice of Statistical Tests

 Table 1 Choice of statistical test from paired or matched observation

Variable	Test
Nominal	McNemar's Test
Ordinal (ordered categories)	Wilcoxon
Quantitative (discrete or non-normal)	Wilcoxon
Quantitative (normal)	Paired t-test

 Table 2 Parametric and nonparametric tests for comparing two or more groups

Parametric Test	Situation	Nonparametric Test	
t-test	Two independent population	Wilconxon rank sum test	
t-test		Mann-Whitney U test	
One way analysis of variance	Three or more populations	Kruskal Wallis test	
Daired t teat	Deirad population	Sign test	
Paireo t-test	Parred population	Wilconxon rank sign test	
Pearson correlation	Correlation	Spearman correlation	

Source: <u>https://www.healthknowledge.org.uk/public-health-textbook/research-</u>methods/1b-statistical-methods/parametric-nonparametric-tests

Choice of Statistical Tests

Table 3 Choice of statistical test for independent observations

	Outcome variable						
Input variable		Nominal	Categorical (>2)	Ordinal	Quantitative Discrete	Quantitative Non-normal	Quantitative Normal
	Nominal	χ^2 or Fisher's	χ^2	χ^2 -trend or Mann- Whitney	Mann-Whitney	Mann-Whitney or log-rank ^a	T-test
	Categorical (>2)	χ^2	χ^2	Kruskal-Wallis ^b	Kruskal-Wallis ^b	Kruskal-Wallis ^b	ANOVA ^c
	Ordinal	χ^2 -trend or Mann- Whitney	e	Spearman rank	Spearman rank	Spearman rank	Spearman rank or Linear regression ^d
	Quantitative Discrete	Logistic regression	e	e	Spearman rank	Spearman rank	Spearman rank or Linear regression ^d
	Quantitative Non- normal	Logistic regression	e	e	e	Plot data and Pearson or Spearman rank	Plot data and Pearson or Spearman rank and Linear regression
	Quantitative Normal	Logistic regression	e	e	e	Linear regression ^d	Pearson or Linear regression

^a If data are censored. ^b The Kruskal-Wallis test is used for comparing ordinal or non-Normal variables for more than two groups, and is a generalisation of the Mann-Whitney U test. ^c Analysis of variance is a general technique, and one version (one way analysis of variance) is used to compare Normally distributed variables for more than two groups, and is the parametric equivalent of the Kruskal-Wallistest. ^d If the outcome variable is the dependent variable, then provided the residuals (the differences between the observed values and the predicted responses from regression) are plausibly Normally distributed, then the distribution of the independent variable is not important. ^e There are a number of more advanced techniques, such as Poisson regression, for dealing with these situations. However, they require certain assumptions and it is often easier to either dichotomise the outcome variable or treat it as continuous.

Source: https://www.healthknowledge.org.uk/public-health-textbook/research-methods/1b-statistical-methods/parametric-nonparametric-tests

Cheat Sheet

			Dependent Variable			
		Categ	orical	Continuous		
		1 Variable, 2 Categories	1 Variable, >2 Categories	1 Variable	>1 Variable	
	1 Variable 2 Categories Between-subjects			Independent <i>t</i> Test (Compare Means → Independent- Samples)		
	1 Variable 2 Categories Within-subjects	<i>χ</i> ² Τ	est	Paired <i>t</i> Test (Compare Means → Paired Samples)		
1000	1 Variable	(Crosstabs → Statistics → ☑ Chi-square)		One-Way ANOVA	One-Way MANOVA	
orical	>2 Categories Between-subjects 1 Variable		(Compare Means → One-way ANOVA)	(General Linear Model → Multivariate → Add Dependent Variables)		
categ			Repeated Measures ANOVA	Repeated Measures MANOVA		
Ŭ	>2 Categories Within-subjects			(General Linear Model → Repeated Measures → Add Within-Sbj Factors)	(Repeated Measures ANOVA → Add Measures)	
	>1 Variable			Factorial ANOVA	Factorial MANOVA	
÷	All Categorical Between-subjects	Binomial Logistic Regression with Categorical Predictors (Regression → Binary Logistic →		(General Linear Model → Univariate → Add Fixed Factors)	(One-Way MANOVA → Add Fixed Factors)	
	>1 Variable All Categorical			Mixed-Design ANOVA	Mixed-Design MANOVA	
	Mixed Within- & Between-subjects			(Repeated Measures ANOVA → Add Between-Sbj Factors)	(Mixed-Design ANOVA → Add Measures)	
	>1 Variable Mixed Categorical		Multinomial Logistic Regression	One-Way ANCOVA	One-Way MANCOVA	
	& Continuous		(Regression → Multinomial Logistic)	(One-Way ANOVA → Add Covariates)	(One-Way MANOVA → Add Covariates)	

Source: https://towardsdatascience.com/demystifying-statistical-analysis-1-a-handy-cheat-sheet-b6229bf992cf

Road Map of Statistical Analysis

Hypothesis Testing Type I and Type II Errors Reliability & Validity Analyses Inferential Statistics Test of Normality Differences between Parametric and Nonparametric Statistics Parametric Statistics

Nonparametric Statistics

Correlation Analysis

- A statistical hypothesis test is a method of statistical inference used to decide whether the data at hand sufficiently support a particular hypothesis. Hypothesis testing allows us to make probabilistic statements about population parameters.
- The usual line of reasoning is as follows:
 - 1. There is an initial research hypothesis of which the truth is unknown.
 - 2. The first step is to state the relevant **null** and **alternative hypotheses**. This is important, as mis-stating the hypotheses will muddy the rest of the process.
 - 3. The second step is to consider the statistical assumptions being made about the sample in doing the test; for example, assumptions about the statistical independence or about the form of the distributions of the observations. This is equally important as invalid assumptions will mean that the results of the test are invalid.

- 4. Decide which test is appropriate, and state the relevant test statistic *T*.
- 5. Derive the distribution of the test statistic under the null hypothesis from the assumptions. In standard cases this will be a well-known result. For example, the test statistic might follow a Student's t distribution with known degrees of freedom, or a normal distribution with known mean and variance. If the distribution of the test statistic is completely fixed by the null hypothesis we call the hypothesis simple, otherwise it is called composite.
- 6. Select a significance level (α), a probability threshold below which the null hypothesis will be rejected. Common values are 5% and 1%.

- 7. The distribution of the test statistic under the null hypothesis partitions the possible values of *T* into those for which the null hypothesis is rejected—the so-called *critical region*—and those for which it is not. The probability of the critical region is α . In the case of a composite null hypothesis, the maximal probability of the critical region is α .
- 8. Compute from the observations the observed value t_{obs} of the t-test statistic.
- 9. Decide to either reject the null hypothesis in favor of the alternative or not reject it. The decision rule is to reject the null hypothesis H_0 if the observed value t_{obs} is in the critical region, and not to reject the null hypothesis otherwise.

- A common alternative formulation of this process goes as follows:
 - 1. Compute from the observations the observed value t_{obs} of the test statistic *T*.
 - 2. Calculate the *P* value. This is the probability, under the null hypothesis, of sampling a test statistic at least as extreme as that which was observed (the maximal probability of that event, if the hypothesis is composite).
 - 3. Reject the null hypothesis, in favor of the alternative hypothesis, if and only if the *p*-value is less than (or equal to) the significance level (the selected probability) threshold (α), for example 0.05 or 0.01.

Road Map of Statistical Analysis

Hypothesis Testing

Type I and Type II Errors

Reliability & Validity Analyses

Inferential Statistics

Test of Normality

Differences between Parametric and Nonparametric Statistics

Parametric Statistics

Nonparametric Statistics

Correlation Analysis

Type I and Type 2 Errors

Type I and Type II Errors

		Actual		
	Null hypothesis	H ₀ is False	<i>H</i> ₀ is True	
Prediction Rejected H ₀ Accepted H ₀		Correct Decision True Positive Probability = $1 - \beta$	Type I Error False Positive <i>Probability</i> = α	
		Type II Error False Negative <i>Probability</i> = β	Correct Decision True Negative Probability = $1 - \alpha$	

Question Time

If you have any questions, please do not hesitate to ask me.

Big Data Fundamentals and Applications Statistics III Hypothesis Testing

The End Thank you for your attention))

